bubel-ecs/demos/source/game_core/collision.d
Mergul 64dc099e0a Demos big update
-Added some more math functions
-fixed many memory leaks
-added AABB and BVHTree support to collision.d
 *BVHTree has only incrementally adding entities implemented by now (and bad BottomUp algorithm)
 *ECS Systems use two trees, one for static and one for dynamic entities, dynamic BVH is builded every frame from scratch by now
-BrickBreaker now uses BVHTree to collision detection
 *balls only use tree for checks (they aren't adding to tree)
-fixed bug leading to crash
2020-07-17 13:38:41 +02:00

1023 lines
No EOL
24 KiB
D

module game_core.collision;
import bubel.ecs.attributes;
import bubel.ecs.block_allocator;
import bubel.ecs.core;
import bubel.ecs.std;
import bubel.ecs.vector;
import ecs_utils.math.vector;
import ecs_utils.utils;
import game_core.basic;
void registerCollisionModule(EntityManager* manager)
{
manager.registerDependency(ShootGridDependency);
manager.registerDependency(BVHDependency);
manager.registerDependency(StaticBVHDependency);
manager.registerComponent!CShootGrid;
manager.registerComponent!CShootGridMask;
manager.registerComponent!CColliderScale;
manager.registerComponent!CBVH;
manager.registerComponent!CAABB;
manager.registerComponent!CStatic;
manager.registerSystem!ShootGridManager(-80);
manager.registerSystem!ShootGridCleaner(-101);
manager.registerSystem!BVHBuilder(-80);
manager.registerSystem!StaticBVHBuilder(-80);
//manager.registerSystem!BVHBuilder2(-79);
manager.registerSystem!AABBUpdater(-81);
}
enum ShootGridDependency = "ShootGridDependency";
enum BVHDependency = "BVHDependency";
enum StaticBVHDependency = "StaticBVHDependency";
struct CShootGrid
{
mixin ECS.Component;
}
struct CBVH
{
mixin ECS.Component;
uint index;
}
struct CStatic
{
mixin ECS.Component;
}
struct CAABB
{
mixin ECS.Component;
alias bounding this;
AABB bounding;
}
struct CShootGridMask
{
mixin ECS.Component;
alias value this;
ubyte value;
}
struct CColliderScale
{
mixin ECS.Component;
alias value this;
vec2 value = vec2(16,16);
}
struct ShootGrid
{
~this() @nogc nothrow
{
if(nodes)Mallocator.dispose(nodes);
if(masks)Mallocator.dispose(masks);
}
struct Node
{
alias entity this;
EntityID entity;
}
void create(ivec2 nodes_count, vec2 node_size)
{
this.size = nodes_count;
this.node_size = node_size;
inv_node_size = vec2(1.0/node_size.x, 1.0/node_size.y);
nodes = Mallocator.makeArray!Node(nodes_count.x * nodes_count.y);
masks = Mallocator.makeArray!ubyte(nodes.length);
}
void mark(EntityID id, vec2 beg, vec2 end, ubyte mask)
{
ivec2 ibeg = cast(ivec2)(beg * inv_node_size);
ivec2 iend = cast(ivec2)(end * inv_node_size + 0.5);
if(ibeg.x < 0)ibeg.x = 0;
if(ibeg.y < 0)ibeg.y = 0;
if(iend.x > size.x)iend.x = size.x;
if(iend.y > size.y)iend.y = size.y;
foreach(i; ibeg.y .. iend.y)
{
foreach(j; ibeg.x .. iend.x)
{
nodes[i * size.x + j] = id;
masks[i * size.x + j] = mask;
}
}
}
void clear()
{
size_t size = nodes.length * EntityID.sizeof;
memset(nodes.ptr, 0, size);
memset(masks.ptr, 0, masks.length);
}
bool test(out EntityID id, vec2 beg, vec2 end, ubyte mask)
{
ivec2 ibeg = cast(ivec2)(beg * inv_node_size);
ivec2 iend = cast(ivec2)(end * inv_node_size + 0.5);
if(ibeg.x < 0)ibeg.x = 0;
if(ibeg.y < 0)ibeg.y = 0;
if(iend.x > size.x)iend.x = size.x;
if(iend.y > size.y)iend.y = size.y;
foreach(i; ibeg.y .. iend.y)
{
foreach(j; ibeg.x .. iend.x)
{
uint index = i * size.x + j;
if(nodes[index].id != 0)
{
if((masks[index] & mask) == 0)continue;
id = nodes[index];
return true;
}
}
}
return false;
}
bool test(out EntityID id, vec2 pos, ubyte mask)
{
ivec2 ipos = cast(ivec2)(pos * inv_node_size - 0.5);
if(ipos.x < 0)ipos.x = 0;
if(ipos.y < 0)ipos.y = 0;
if(ipos.x >= size.x)ipos.x = size.x - 1;
if(ipos.y >= size.y)ipos.y = size.y - 1;
size_t index = ipos.y * size.x + ipos.x;
if((masks[index] & mask) == 0)return false;
if(nodes[index].id != 0)
{
id = nodes[index];
return true;
}
return false;
}
vec2 inv_node_size;
ivec2 size;
vec2 node_size;
Node[] nodes;
ubyte[] masks;
}
struct ShootGridCleaner
{
mixin ECS.System!1;
struct EntitiesData
{
}
ShootGrid* grid;
bool onBegin()
{
grid = gEM.getSystem!ShootGridManager().grid;
if(grid != null)return true;
else return false;
}
void onUpdate(EntitiesData data)
{
if(grid)grid.clear();
}
}
struct ShootGridManager
{
mixin ECS.System!128;
mixin ECS.WritableDependencies!(ShootGridDependency);
struct EntitiesData
{
uint length;
//uint thread_id;
const (Entity)[] entity;
@readonly CLocation[] locations;
@readonly CShootGrid[] grid_flag;
//@readonly CGuild[] guild;
@optional @readonly CShootGridMask[] mask;
@optional @readonly CScale[] scale;
@optional @readonly CColliderScale[] collider_scale;
}
ShootGrid* grid;
void onCreate()
{
//grid = space_invaders.shoot_grid;
grid = Mallocator.make!ShootGrid;
grid.create(ivec2(80,60), vec2(5,5));
}
void onDestroy()
{
Mallocator.dispose(grid);
}
// bool onBegin()
// {
// //if(!grid)return false;
// //grid.clear();
// return true;
// }
void onUpdate(EntitiesData data)
{
vec2[] scale;
if(data.collider_scale)scale = cast(vec2[])data.collider_scale;
else if(data.scale)scale = cast(vec2[])data.scale;
else return;
if(data.mask is null)
{
foreach(i; 0..data.length)
{
vec2 half_scale = scale[i] * 0.5;
grid.mark(data.entity[i].id, data.locations[i] - half_scale, data.locations[i] + half_scale, ubyte.max);//cast(ubyte)(1 << data.guild[i].guild));
}
}
else foreach(i; 0..data.length)
{
vec2 half_scale = scale[i] * 0.5;
grid.mark(data.entity[i].id, data.locations[i] - half_scale, data.locations[i] + half_scale, data.mask[i]);//cast(ubyte)(1 << data.guild[i].guild));
}
}
}
struct AABB
{
vec2 size()
{
return max-min;
}
vec2 center()
{
return (max+min) * 0.5;
}
float area()
{
return size.x * size.y;
}
void set(ref AABB base, vec2 position, float angle, vec2 scale)
{
import std.algorithm.comparison : max;
float sr = sinf(angle);
float cr = cosf(angle);
/*mat2 m = mat2(cr,-sr,
sr,cr);*/
//vec2 pos = ;//m * ((base.max + base.min)*0.5*scale);
vec2 size = (base.max - base.min)*scale;
vec2[2] axis = [vec2(cr*size.x,sr*size.y),vec2(-sr*size.x,cr*size.y)];
this.max.x = max(fabs(axis[0].x),fabs(axis[1].x));
this.max.y = max(fabs(axis[0].y),fabs(axis[1].y));
this.min = -this.max;
this.min += center + position;
this.max += center + position;
}
void set(ref AABB base, vec2 position, vec2 scale)
{
vec2 size = (base.max - base.min)*scale;
this.min = -size;
this.max = size;
this.min += center + position;
this.max += center + position;
}
void set(ref AABB base, vec2 position, float angle)
{
import std.algorithm.comparison : max;
float sr = sinf(angle);
float cr = cosf(angle);
/*mat2 m = mat2(cr,-sr,
sr,cr);*/
//vec2 pos = ;//m * ((base.max + base.min)*0.5*scale);
vec2 size = (base.max - base.min);//*scale;
vec2[2] axis = [vec2(cr*size.x,sr*size.y),vec2(-sr*size.x,cr*size.y)];
this.max.x = max(fabs(axis[0].x),fabs(axis[1].x));
this.max.y = max(fabs(axis[0].y),fabs(axis[1].y));
this.min = -this.max;
this.min += center + position;
this.max += center + position;
}
void set(ref AABB base, vec2 position)
{
min = base.min + position;
max = base.max + position;
}
vec2 min;
vec2 max;
}
bool test(AABB a, AABB b)
{
if((a.max.x>b.min.x && a.max.y>b.min.y) &&
(a.min.x<b.max.x && a.min.y<b.max.y))return true;
else return false;
}
byte intersectTest(AABB a, AABB b)
{
if(a.min.x < b.min.x && a.min.y < b.min.y &&
a.max.x > b.max.x && a.max.y > b.max.y)return 2;
else if((a.max.x>b.min.x && a.max.y>b.min.y) &&
(a.min.x<b.max.x && a.min.y<b.max.y))return 1;
return 0;
}
bool test(vec2 point, AABB b)
{
if((point.x>b.min.x && point.y>b.min.y) &&
(point.x<b.max.x && point.y<b.max.y))return true;
else return false;
}
AABB merge(AABB a, AABB b)
{
import std.algorithm.comparison: min, max;
return AABB(vec2(min(a.min.x,b.min.x),min(a.min.y,b.min.y)),vec2(max(a.max.x,b.max.x),max(a.max.y,b.max.y)));
}
struct Quadtree
{
Node* add(EntityID id, AABB aabb)
{
ubyte depth = void;
vec2 ratio = aabb.size / this.aabb.size;
//if(ratio.x < ratio.y)depth = log2f();
//else depth = 0;
return null;
//2^x = size2/size;
}
struct Node
{
AABB aabb;
Node*[4] nodes;
MemoryBlock* block;
MemoryBlock* last_block;
}
struct MemoryBlock
{
EntityID[10] entities;
MemoryBlock* next_block;
void* Node;
}
struct MetaBlock
{
union
{
MemoryBlock _alignment;
struct
{
Quadtree* quadtree;
}
}
}
AABB aabb;
Node main_node;
uint max_depth;
BlockAllocator allocator;
}
struct BVHTree
{
void generateTopDown()
{
}
void generateBottomUp()
{
clearNodes();
uint index = 0;
while(index < nodes.length - 1)
{
Node* node = &nodes[index];
if(node.parent != uint.max)
{
index++;
continue;
}
uint best_index = 0;
float best_cost = float.max;
foreach(i;index+1 .. nodes.length)
{
Node* test_node = &nodes[i];
if(test_node.parent != uint.max)continue;
// vec2 rel_pos = node.bounding.center - test_node.bounding.center;
// float cost = fabs(rel_pos.x) + fabs(rel_pos.y);
// float cost = rel_pos.length;
// float cost = rel_pos.length2;
float cost = merge(node.bounding, test_node.bounding).area();
if(cost < best_cost)
{
best_cost = cost;
best_index = cast(uint)i;
}
}
uint new_index = getNode();
Node* new_node = &nodes[new_index];
Node* best_node = &nodes[best_index];
new_node.childs[0] = index;
new_node.childs[1] = best_index;
new_node.bounding = merge(best_node.bounding, node.bounding);
best_node.parent = new_index;
node.parent = new_index;
}
root = cast(uint)nodes.length - 1;
}
uint addIncrementally(AABB bounding, EntityID id)
{
if(root == uint.max)
{
root = getNode();
Node* new_node = &nodes[root];
new_node.parent = uint.max;
new_node.entity = id;
new_node.bounding = bounding;
//new_node.childs = [uint.max, uint.max].staticArray;
new_node.childs[0] = uint.max;
new_node.childs[1] = uint.max;
return root;
}
float cost = float.max;
uint best_index = 0;
findBest(bounding, root, best_index, cost, 0);
uint new_index = getNode();
uint leaf_index = getNode();
Node* new_node = &nodes[new_index];
Node* node = &nodes[best_index];
Node* parent = &nodes[node.parent];
Node* leaf_node = &nodes[leaf_index];
leaf_node.entity = id;
leaf_node.bounding = bounding;
leaf_node.parent = new_index;
new_node.parent = node.parent;
new_node.childs[0] = best_index;
new_node.childs[1] = leaf_index;
new_node.bounding = merge(bounding, node.bounding);
if(node.parent != uint.max)
{
if(parent.childs[0] == best_index)
{
parent.childs[0] = new_index;
}
else
{
parent.childs[1] = new_index;
}
}
else
{
root = new_index;
}
node.parent = new_index;
uint index = new_node.parent;
while(index != uint.max)
{
Node* lnode = &nodes[index];
recalculate(lnode);
rotate(lnode);
index = lnode.parent;
}
return leaf_index;
}
void clearNodes()
{
root = uint.max;
uint i = 0;
while(i < nodes.length)
{
Node* node = &nodes[i];
if(node.childs[0] == uint.max)
{
node.parent = uint.max;
i++;
}
else
{
removeNode(i);
}
}
}
void findBest(AABB bounding, uint node_index, ref uint best_index, ref float best_cost, float cost)
{
Node* node = &nodes[node_index];
//float area = nodes.bounding.area;
AABB new_bounding = merge(node.bounding, bounding);
float new_area = new_bounding.area;
if(new_area + cost < best_cost)
{
best_index = node_index;
best_cost = cost + new_area;
}
if(node.childs[0] == uint.max)return;
float area_delta = new_area - node.bounding.area;
if(bounding.area + area_delta + cost < best_cost)
{
findBest(bounding, node.childs[0], best_index, best_cost, cost + area_delta);
findBest(bounding, node.childs[1], best_index, best_cost, cost + area_delta);
}
}
void add(AABB bounding, EntityID id)
{
Node* node = &nodes[getNode()];
node.entity = id;
node.bounding = bounding;
// node.childs = [uint.max,uint.max];
node.childs[0] = uint.max;
node.childs[1] = uint.max;
}
void test(AABB bounding, bool delegate(EntityID id) callback)
{
bool traverse(Node* node)
{
if(.test(bounding, node.bounding))
{
if(node.childs[0] == uint.max)
{
return callback(node.entity);
}
if(!traverse(&nodes[node.childs[0]]))return false;
if(!traverse(&nodes[node.childs[1]]))return false;
}
/*node.bounding.max.x = max(nodes[node.childs[0]].bounding.max.x,nodes[node.childs[1]].bounding.max.x);
node.bounding.max.y = max(nodes[node.childs[0]].bounding.max.y,nodes[node.childs[1]].bounding.max.y);
node.bounding.min.x = min(nodes[node.childs[0]].bounding.min.x,nodes[node.childs[1]].bounding.min.x);
node.bounding.min.y = min(nodes[node.childs[0]].bounding.min.y,nodes[node.childs[1]].bounding.min.y);*/
return true;
}
if(root < nodes.length)traverse(&nodes[root]);
}
float computeCost()
{
float cost = 0;
foreach(ref Node node;nodes)
{
if(node.childs[0] != uint.max)
{
cost += node.bounding.area();
}
}
return cost;
}
void recalculate(Node* node)
{
import std.algorithm.comparison: min, max;
node.bounding = merge(nodes[node.childs[0]].bounding, nodes[node.childs[1]].bounding);
}
void rotate(Node* node)
{
import std.algorithm.comparison: min, max;
if(node.parent == uint.max)return;
Node* parent = &nodes[node.parent];
Node* child1 = &nodes[node.childs[0]];
Node* child2 = &nodes[node.childs[1]];
uint child_index = void;
if(parent.childs[0] == child1.parent)
{
child_index = 1;
}
else
{
child_index = 0;
}
Node* to_rotate = &nodes[parent.childs[child_index]];
float cost = node.bounding.area();
AABB bounding1 = merge(child1.bounding, to_rotate.bounding);
AABB bounding2 = merge(child2.bounding, to_rotate.bounding);
float area1 = bounding1.area;
float area2 = bounding2.area;
if(area1 < area2)
{
if(area1 < cost)
{
to_rotate.parent = child1.parent;
child2.parent = node.parent;
uint swap_index = node.childs[1];
node.childs[1] = parent.childs[child_index];
parent.childs[child_index] = swap_index;
node.bounding = bounding1;
}
}
else
{
if(area2 < cost)
{
to_rotate.parent = child1.parent;
child1.parent = node.parent;
uint swap_index = node.childs[0];
node.childs[0] = parent.childs[child_index];
parent.childs[child_index] = swap_index;
node.bounding = bounding2;
}
}
}
void remove(uint i)
{
//foreach(i, ref Node node; nodes)
//{
// if(node.entity == id)
// {
Node* node = &nodes[i];
if(node.parent != uint.max)
{
///parent isn't root, most common beaviour
Node* parent = &nodes[node.parent];
if(parent.parent == uint.max)
{
//delete leaf attached to root
if(parent.childs[0] == i)
{
root = parent.childs[1];
nodes[parent.childs[1]].parent = uint.max;
}
else
{
root = parent.childs[0];
nodes[parent.childs[0]].parent = uint.max;
}
}
else
{
///remove node from inside of tree
Node* grand_parent = &nodes[parent.parent];
uint remain_index = void;
if(parent.childs[0] == i)remain_index = parent.childs[1];
else remain_index = parent.childs[0];
if(grand_parent.childs[0] == node.parent)
{
grand_parent.childs[0] = remain_index;
nodes[remain_index].parent = parent.parent;
}
else
{
grand_parent.childs[1] = remain_index;
nodes[remain_index].parent = parent.parent;
}
uint index = parent.parent;
while(index != uint.max)
{
Node* lnode = &nodes[index];
recalculate(lnode);
rotate(lnode);
index = lnode.parent;
}
}
removeNode(node.parent);
}
else root = uint.max;
removeNode(cast(uint)i);
//return;
//}
//}
}
void clear()
{
last_node = uint.max;
nodes.clear();
root = uint.max;
}
uint getNode()
{
if(last_node == uint.max)
{
//nodes.length = nodes.length + 1;
nodes.add(Node());
return cast(uint)nodes.length - 1;
}
else
{
uint ret = last_node;
last_node = nodes[last_node].parent;
nodes[ret] = Node();
return ret;
}
}
void removeNode(uint index)
{
Node* node = &nodes[index];
node.parent = last_node;
node.ptr = null;
last_node = index;
}
/*void create()
{
root = getNode();
}*/
struct Node
{
union
{
EntityID entity;
void* ptr;
}
AABB bounding;
uint parent = uint.max;
union
{
struct //workaround betterC compilation issue with _memset
{
uint _c1 = uint.max;
uint _c2 = uint.max;
}
uint[2] childs;
}
}
Vector!Node nodes;
//uint nodes_count;
uint last_node = uint.max;
uint root = uint.max;
}
struct StaticBVHBuilder
{
mixin ECS.System!1;
mixin ECS.WritableDependencies!(StaticBVHDependency);
struct EntitiesData
{
uint length;
//uint thread_id;
const (Entity)[] entity;
CBVH[] bvh;
@readonly CStatic[] static_flag;
@readonly CLocation[] locations;
@readonly CAABB[] bounding;
}
BVHTree* tree;
void onCreate()
{
tree = Mallocator.make!BVHTree;
}
void onDestroy()
{
Mallocator.dispose(tree);
}
// bool onBegin()
// {
// tree.clear();
// return true;
// // return false;
// }
void onAddEntity(EntitiesData data)
{
foreach(i;0..data.length)
{
data.bvh[i].index = tree.addIncrementally(data.bounding[i], data.entity[i].id);
}
}
void onRemoveEntity(EntitiesData data)
{
foreach(i;0..data.length)
{
tree.remove(data.bvh[i].index);
}
}
// void onUpdate(EntitiesData data)
// {
// foreach(i; 0..data.length)
// {
// // tree.add(data.bounding[i], data.entity[i].id);
// tree.addIncrementally(data.bounding[i], data.entity[i].id);
// }
// import std.stdio;
// writeln("Cost: ",tree.computeCost());
// }
}
struct BVHBuilder
{
mixin ECS.System!1;
mixin ECS.WritableDependencies!(BVHDependency);
struct EntitiesData
{
uint length;
//uint thread_id;
const (Entity)[] entity;
CBVH[] bvh;
@readonly CLocation[] locations;
@readonly CAABB[] bounding;
}
mixin ECS.ExcludedComponents!(CStatic);
BVHTree* tree;
void onCreate()
{
tree = Mallocator.make!BVHTree;
}
void onDestroy()
{
Mallocator.dispose(tree);
}
bool onBegin()
{
tree.clear();
return true;
// return false;
}
// void onAddEntity(EntitiesData data)
// {
// foreach(i;0..data.length)
// {
// tree.add(data.bounding[i], data.entity[i].id);
// }
// }
// void onRemoveEntity(EntitiesData data)
// {
// foreach(i;0..data.length)
// {
// tree.remove(data.entity[i].id);
// }
// }
void onUpdate(EntitiesData data)
{
foreach(i; 0..data.length)
{
// tree.add(data.bounding[i], data.entity[i].id);
data.bvh[i].index = tree.addIncrementally(data.bounding[i], data.entity[i].id);
}
// import std.stdio;
// writeln("Cost: ",tree.computeCost());
}
}
/*
struct BVHBuilder2
{
mixin ECS.System!1;
mixin ECS.WritableDependencies!(BVHDependency);
struct EntitiesData
{
}
BVHTree* tree;
void onCreate()
{
tree = gEM.getSystem!BVHBuilder().tree;
}
bool onBegin()
{
//if(tree.nodes.length-1 != tree.root)tree.clear();
return true;
}
void onUpdate(EntitiesData data)
{
if(tree.nodes.length-1 != tree.root)
{
tree.generateBottomUp();
import std.stdio;
writeln("Cost: ",tree.computeCost());
}
}
}//*/
struct AABBUpdater
{
mixin ECS.System!64;
struct EntitiesData
{
uint length;
//uint thread_id;
const (Entity)[] entity;
CAABB[] bounding;
@readonly CLocation[] location;
@readonly CScale[] scale;
@optional @readonly CRotation[] rotation;
}
void onAddEntity(EntitiesData data)
{
foreach(i; 0..data.length)
{
data.bounding[i] = AABB(data.location[i]-data.scale[i],data.location[i]+data.scale[i]);
}
}
void onUpdate(EntitiesData data)
{
foreach(i; 0..data.length)
{
data.bounding[i] = AABB(data.location[i]-data.scale[i],data.location[i]+data.scale[i]);
}
}
}